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INTRODUCTION

Soil temperature profoundly influences many biological processes,

including plant growth and development, and the behavior of soil-dwelling

microorganisms, insects, and higher animals. Much of the .1.,1 w() k on

soil temperature effects on plant growth is summarized in et

al. (1952). As an example, consider the effects of low tempt.

transpiration (Fig. 1.). The warm weather plants, cotton and wc' lon,

are significantly more sensitive to cold temperatures than are collas,

which are grown as a winter crop in the southern United States. I'lants

are also sensitive to the extremes of temperature between day ar ight,

winter and summer. In many species, it is this fluctuation of temperature

rather than its absolute or average value which is the key ingredient,

as for example in seed germination (see e.g., Richards et al. 1952).

Consequently, a complete understanding of the soil temperature dependence

of plant growth and development requires knowledge of soil temperature

as a function of time. As will be pointed out later, soil temperature

variation with depth is another factor of importance here.

The metabolic processes of soil-dwelling microorganisms are also

temperature-dependent. They break down organic matter, produce nitrogen,

and play a part in the aggregation of the soil itself (Richards et al.

1952). In turn, these processes affect plant growth and maintenance of

the nutrient cycle. Monteith (1973) points out, however, that it is

difficult to observe the behavior of the flora and fauna in an undisturbed,

natural soil. Thus relatively little is known concerning temperature

effects on them. Certainly, however, a model of soil temperature variation

is an essential first step on the road to this understanding.
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Finally, consider some higher animals who spend part of their life

cycle in the soil. These include obvious soil-dwellers such as mice,

gophers, moles, etc. In addition, hibernating species such as bears

become closely coupled to soil temperatures during their inactive period.

The animal ecologist is often concerned with elucidating how the survival

strategies of such animals are related to the physical world around

them; not only in qualitative terms, but also in terms of measurable

parameters. As an example, consider the pocket mouse, Perognathus

longimembris, which, with a body weight of - 8 g, is among the smallest

rodents. French (1976), in a series of laboratory experiments, determined

that this species selected the highest experimental temperature in the

soil for its burrow at all times of the year.. The question of determining

the mouse's location at any time of the day or year becomes in large

part, then, a question of determining where the maximum soil temperature

occurs in the field. On the other hand, some animals that hibernate

prefer lower temperatures near their dormant body temperature in order

to conserve energy while in the dormant state. In short, many survival

strategies of animals are affected to one degree or another by the soil

temperature environment.

Soil heat flow and the resulting soil temperature distributions

have important ecological consequences. The question remains, however,

as to how soil temperatures can be obtained as a practical matter. Two

alternatives present themselves. In some applications, actual measurement

of soil temperature profiles and heat flux is preferred. This approach

is straightforward, assuming the proper instrumentation is available.

Surface and profile heterogeneity may make extensive sampling necessary,

7
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however. Actual measurements of soil temperatures are frequently not

available, whether due to the expense of the equipment, inaccessibility

of the site, or simply due to the inconvenience involved. Consequently,

the utility of a model which can predict soil temperatures from more

readily attainable environmental variables becomes apparent.

This module will focus primarily on the modelling approach. It

should be pointed out that much of the physical insight developed here

Is also essential for establishing a proper measurement program. In the

final analysis, the type of approach utilized will depend upon individual

circumstances.

GOVERNING FACTORS IN SOIL HEAT FLOW

The foregoing discussion has served to illustrate the need for a

quantitative grasp of soil temperature distribution. We now ask what

properties of the soil and the general environment are important in

determining this distribution. Once we know these properties, equations

incorporating them can be derived, and (hopefully) solutions for various

conditions can be found.

First, Lonsider some actual observations of soil temperature measure-

ments made at several depths beneath the soil over a period of several

days (Fig. 2). Notice that at any depth the temperature is an almost

periodic function of time. By this it is meant that the temperature

trace (wave) repeats itself (almost) at regular intervals, in this case

approximately every 24 hours. This time interval is called the period

of the temperature wave, a variation with a periodicity of 24 hours

being termed a diurnal variation. In addition to this time dependence,

large differences in temperature are also evident between various depths.
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As one goes deeper, the amplitude of the wave is rapidly damped out.

There is also a time (phase) lag associated with the occurrence of the

maxima (or minima) of the temperature wave as depth increases.

These observations allow us to form a rather convincing hypothesis

concerning the controlling variables. The observed diurnal heating

cycle is no doubt linked to solar heating at the soil surface. Evidence

for this is presented in Fig. 3, where it is apparent that soil tempera-

ture is strongly correlated with solar radiation. In fact, solar radiation

is the energy source driving the flow of heat in the soil. (As will be

shown later, it is this flow of heat which determines the temperature

distribution.) The increasing phase lag as a function of depth is again

quite evident, as it was in Fig. 2. It seems reasonable to hypothesize

that the lag is due to the finite amount of time required for energy (as

heat) to move down from the surface and heat up the soil profile. In

turn, the speed or rate of energy flow is determined by a quality unique

for a given material, known as its thermal conductivity (k). As the

name implies, thermal conductivity is a measure of a particular sub-

stance's ability to transmit heat. However, more information is required

to completely specify the temperature variation. This is because, for a

given amount of heat absorbed by various substances, different temperature

increases will be observed. Hence the term heat capacity is introduced,

and it may be thought of as the ratio of heat absorbed to change in

temperature for a given mass of material.

In a very qualitative sense, we have described what appear to be

the pertinent quantities involved in determining the soil temperature

distribution, based simply on reason and observations (with just a
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little prior knowledge to guide the way). It remains now to formalize

the relationship between heat flow and temperature, to develop the

equations describing these processes (with emphasis on the simplifying

assumptions involved), and finally to investigate the utility of this

more formalized approach.

FORMAL DEVELOPMENT

In the preceding section, a cause and effect relationship between

soil heat flow and temperature distribution was implied. It is instruc-

tive to formalize this relation; indeed, the, equation doing so will form

the basis for subsequent discussion. First of all, however .it is

necessary to present a more rigorous sperdfication of the problem.

Fourier's Law of Heat Conduction:'

Van Wijk and DeVries (1966) present a good discussion of the simpli-

fying assuptions made to facilitate the mathematical development of heat

conduction. These include:

1. The soil is homogeneous with respect to heat transfer by

conduction. Now, conduction of heat is due to the transfer of the

random vibratory motion of the molecules in the medium. Dub tcuthe

natural variability of soils, one would consequantly:...not expeptplomogene-

ous soil heat transfer. However, if the soil" thefinai properties consid-

ered are bulk values, i.e., averaged over a volume of soil that is large

with respect to the inhomogeneities, then this is a good assumption. It

x;-)

has the effect of making the heat transfer at any point independent of

position.

11



2. Heat flow takes place only in the vertical direction. Since

the heat input due to solar radiation can be considered uniform at the

surface, this assumption is not limiting for a horizontally homogeneous

surface.

3. There are no sources or sinks for heat (such as by,chemical

reaction) nor conversion of heat, into other forms of energy (such as

latent heat of evaporation).

Hence the problem we are considering can be termed unidirectional

heat conduction in a homogeneous medium. Empirical observation of this

phenomenon leads to the conclusion that the heat flow between two points

in such a medium is proportional to the temperature difference between

those points. Such an observation seems consistent with our personal

experience; the hotter the burner on the stove, the faster the kettle

heats up. Of course, if a kettle of water is allowed to reach the

boiling point, then further heat input is utilized to vaporize the water

without further temperature increase. This is why we have included

assumption 3.

Consider a block of soil (Fig. 4). The amount of heat energy which

flows by conduction (Q) is directly proportional to the temperature

difference (AT) between top and bottom faces, as we have said before.

We can write

Q mAT. (1)

The amount of heat transmitted through the soil block per unit time (t)

is termed the heat flux (Q/t). The heat flux per unit area (A) is

termed the heat flux density (Q/At). The heat, or heat flux density

-4.1 2
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Flo. 11. One-dimensional heat conduction.

Fig. 4, One-dimensional heat conduction (from Rose 1966). .
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(also termed G), has also been observed to be proportional to AT, while

being inversely proportional to the length of the path (L). Therefore

one can write

Q AT
G =A T - -k , (2)

where the constant of proportionality (k) is the thermal conductivity.

In fact, Equation 2 can be considered a defining relation for thermal

conductivity. If we now adopt the standard procedure of calculus and

consider small changes in temperature (dT) over small increments of time

(dt), one gets the standard form of Fourier's law of heat conduction:

dT
G =-kdz (3)

It is important to notice the introduction of the minus sign. In

words, this simply means that the direction of heat flow is opposite to

the direction in which the temperature increases. To illustrate this,

consider Fig. 5, where we assume that soil temperature varies linearly

with depth in the soil. Observe the opposite sense of temperature

change and heat flux density. Alternatively, one may deduce the sign

dT
from consideration of the temperature gradient or slope, of the T

dz

versus depth (z) curve. As the depth increases, the temperature decreases.

Hence the temperature gradient dT/dz is negative. For downward heat

flux to be positive, which is the usual convention, we must add the

minus sign to obtain Equation 3. (See Table A in the Appendix for a

list of symbols, units, and dimensions).

14
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Fig. 5. Illustration of the source of the minus sign
found in Fourier's law of heat conduction
(Equation 3).
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Equation 3 clearly' indicates the importance of the thermal conduc-

tivity in determining the magnitude of the heat flux density. Conse-

quently, we wish to understand what factors affect its value. If dT/dz

= 1 in Equation 3, then the thermal conductivity has the interpretation

of the flux density in response to a unit gradient. In such terms one

can compare typical values of thermal conductivity for various materials,

gaining a feel for their relative ability to conduct heat (Table 1).

Such comparison reveals that the average thermal conductivity of soil is

not only a function of mineral composition and structure, but also

depends on its content of air, water, and organic matter. Since the

thermal conductivity of air is small, changes in air content as the soil

is wetted or dries has little effect on overall thermal conductivity.

Likewise, while thermal conductivity is a function of temperature, the

effect is so small that it can be neglected while dealing with soils.

The effect of water content on k cannot be neglected, at least for

relatively dry soils, since k may increase an order of magnitude when

water content goes from 0 to 20 percent (Fig. 6). In actuality, thermal

conductivity is a function of depth, since soil composition, air and

water content generally vary with depth (see e.g., Van Wijk and Derksen

1966). For our purposes of eliciting the general features of soil heat

flow, however, it can be assumed that k is constant with depth.

There are many ways in which k for soil might be estimated. Taylor

and Ashcroft (1972) give a brief review of the subject. They consider

two genera] methods of measurement, based on steady state heat flow

(temperature not a function of time) and transient heat flow (temperature

changes with time). Steady state methods suffer from the fact that heat
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Fig. 6. Dependence of the thermal conductivity k on the
volume fraction of water X for four different
soil types (from Sellers 1965).
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Fig. 7. Variation of volumetric heat capacity (C) with water
content in a typical soil (after Rose 1966).'
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flow in soils is possible not only by conduction, but also by liquid and

vapor flow of water in moist soils. Consequently, applying a constant

temperature difference across a sample soil section causes the hotter

face to dry out and the cooler face to become wetter, calling the results

obtained into question. Therefore, unless heat transfer due to liquid

water is negligible (i.e., unless the soil is dry), transient methods

are recommended.* These methods, which will be discussed in the section

on the heat conduction equation, minimize the effects of water movement

due to thermal gradients.

Heat Storage and Energy Conservation

Equation 3 embodies the concept that heat flows from high to low

temperature areas at a rate proportional to the temperature gradient.

The constant of proportionality, k, is a quantitative measure of a

medium's ability to transmit heat. As was discussed in the section on

governing factors, complete specification of the temperature distribution

also requires knowledge of the capacity of the medium to store heat for

a given temperature change, i.e., its heat capacity. In general, heat

capacity is defined on either a volumetric or mass basis. Specific heat

capacity or specific heat (c) is defined in SI units as the amount of

heat required to raise the temperature of 1 kg of material 1°C. Volumetric

heat capacity is defined as C = pc, where p is the density of the material.

Table A (Appendix) lists dimensions and units of these quantities, while

*DeVries (1966) presents a discussion of the influence of moisture

movement on k. In those cases where only vapor transport is significant,
the increased heat flux due to vapor diffusion can be described in a
modified thermal conductivity coefficient.
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Table 1 lists typical values of specific heat for various materials.

Taylor and Ashcroft (1972) present a more complete discussion from the

viewpoint of thermodynamics.

The bulk heat capacity is generally estimated by adding up the heat

capacities of the various soil constituents in a unit volume. The heat

capacity per unit volume (C) can then be expressed as

C = pc = xCm + XC + XC + XC
m w w a a o o

(4)

where p is the soil density, X is volume fraction (dimensionless), and

the subscripts m, w, a, and o refer to minerals, water, air and organics,

respectively (DeVries 1966). Use of Equation 4 is illustrated by

DeVries (1966). Reliable experimental values of C , C , and C are (in
m w o

cgs units) 0.46, 1.0, and 0.60 cal cm
-3

°C
-1

. Calorimetric determination

of the component heat capacities is discussed in detail by Taylor and

Jackson (1965). C
a

is small, and may be neglected, so that Equation 5

becomes

C = 0.46 X
m

+ 0.60 X
o

+ X
w

[cal cm
3

0C
-1

] ( 5 )

It remains then to determine the volume fraction. Notice that for a

given soil, X
m
and X0 will be constant under our assumptions, but that

X
w
will change as the soil wets up or dries, making C a linear function

of water content (Fig. 7). See DeVries (1966) for a more detailed

discussion of heat capacity in soils.
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Table 1. Thermal propertie8 of soils and their components
(from Montieth, 1973).

Density

P
tonne m 3
(106 g m3)

Specific
heat

J

oc 1

Thermal
conductivity

k

W m-I

oc-1

Thermal
diffusivity

K

10
-6 m2

S
-1

(a) Soil components
Quartz 2.66 0.80 8.80 4.18

Clay minerals 2.65 0.90 2.92 1.22

Organic matter 1.30 1.92 0.25 1.00

Water 1.00 4.18 0.57 0.14

Air (20°C) 1.20 x 10-3 1.01 0.025 2050

(b) Soils
Water

content
xo

Sandy soil 0.0 1.60 0.80 0.30 0.24

(40% pore space) 0.2 1.80 1.18 1.80 0.85

0.4 2.00 1.48 2.20 0.74

Clay soil 0.0 1.60 0.89 0.25 0.18

(40% pore space) 0.2 1.80 1.25 1.18 0.53

0.4 2.00 1.55 1.58 0.51

Peat soil 0.0 0.30 1.92 0.06 0.10

(80% pore space) 0.4 0.70 3.30 0.29 0.13

0.8 1.10 3.65 0.50 0.12

20
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We are now in a position to write an equation for the conservation

of energy, which by assumption 3 we limited to heat energy only.*

Assuming no work is done, the general form of this equation can be

stated in words as

net flux of heat rate of change of heat content
per unit volume and time per unit volume

Assumption 3 in section 3 ruled out sources or sinks and conversion of

heat energy into other forms. Consequently, if more heat is entering

the volume of soil under consideration than is leaving, then the heat

content (or more precisely internal energy), and thus the temperature,

of the soil volume must be increasing as a function of time and vice

versa.

Consider first a horizontal soil slab of thickness Az and unit

horizontal dimensions (Fig. 4). Recalling that in general G is a function

of both depth and time, we let G(z,t) and G(z+Az,t) be the heat flux

density at the top and bottom of the slab, respectively, at the same

instant of time t. The difference G(z,t) - G(z+Az,t) then represents

the net heat storage in a slab of volume Az per unit of time and cross

section. Using the definition of a partial derivative (see, e.g.,

Hildebrand 1962), and holding t constant, we may write this difference

as the limiting expression

lim 1Gz,t) - G(z+Az,tp
] Az = - Az.

Az-'0 Az az
(6)

*Note that this is a special case of the first law of thermodynamics.
See Stevenson (1977a) for further details.

21
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This amount of heat storage in the slab will cause a temperature

3T
change per unit of time -57. Assuming that the volumetric heat capacity

3T
(C) is not a function of time, C Az represents the heat storage in a

at

volume Az. This heat storage must be equal to that found in Equation 6

by consideration of differences in heat flux density. We may then write

aT 3G
Az.C Az = -

3t 3z

Canceling out the common terms, we are left with an expression for the

conservation of energy,

3T 3G

3t 3z
(7)

This is also referred to as the continuity equation for heat transfer.

Notice the inclusion of a minus sign. The reason for this is

illustrated by Fig. 4. If we consider the case when the soil volume is

heating up, then C (3T/3t) > 0. Now, for this to be the case, more heat

must be entering the block (G(z)) than is leaving (G(z+Az)), hence

G(z,t) - G(z+Az,t) > 0, so 3G/3z > 0, by the definition of a partial

derivative. Therefore, for Equation 7 to balance, the minus sign must

be included. A similar argument holds when the soil is cooling.

Heat Conduction (Diffusion) Equation

Differentiation of the law of conduction (Equation 3) with respect

to z and combining the result with the continuity equation (Equation 7)

gives

3G 3 (1, aT, 3T

3z 3z %" az' at
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Again, invoking soil homogeneity with depth, we may write

DT D2T

at
- K (8)

where K = k/C = k/pc is called the thermal diffusivity. See Table 1 for

units and some representative typical values of diffusivity. Equation

8 is commonly referred to as the diffusion equation. It arises in many

physical and biological phenomena where the medium of interest can be

considered homogeneous. Notice that while we have reduced our governing

equation for heat flow to one dependent variable (T), we retain the

complexities inherent in equations containing partial derivatives. For

further discussion of this type of equation, known as a partial differen-

tial equation, see e.g., Carrier and Pearson (1976).

The thermal diffusivity, K, is an important parameter here for two

reasons. First, it incorporates the thermal properties of the soil, C

and k, in one expression. The second is that its degree of functional

dependence on t, z, or T will dictate the difficulty of the solution to

Equation 8. In this latter regard, it is well to keep in mind that the

simplified form of Equation 8 is due to our assumption that K is not a

function of depth. To the extent that soil porosity and water content

are functions of depth, application of Equation 8 is questionable.

However, assumption of a constant thermal diffusivity, which we have

alluded to before, will allow us to derive solutions to the problem

illustrative of the general characteristics of soil heat flow.

The combination of k and C allows the one quantity K to determine

the time necessary for the soil temperature to change in any situation.

In Equation 8, we see that the change in temperature with time is related
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to the curvature of the temperature profile (32T/3x2) through the diffusiv-

ity. The smaller the value of K, for a given temperature profile, the

longer it takes the soil to heat up, and vice versa. This is illustrated

in Fig. 8, where an imaginary soil temperature gradient and its first

and second derivatives are plotted. This fig' »e also nicely demonstrates

how one can deduce, simply from the temperature profile, what areas of

the soil will be warming or cooling. Hence we have arrived at a quantita-

tive justification for our reasoned speculation in section 2 that both k

and C are essential for an adequate description of the soil temperature

distribution.

Measurement of K and k are essentially the same, since they differ

only by the quantity C. In the section on Fourier's law, we alluded to

the difficulties encountered using steady state methods due to liquid or

vapor transport of heat by soil water. Here we will briefly discuss

transient methods (see e.g., Jackson and Taylor 1965, or Taylor and

Ashcroft 1972). One is based on measurement of the heating and cooling

rate of an electrically heated wire element in the soil. This rate is

proportional to the diffusivity. Moisture movement during the heating

cycle has been shown to be small for practical purposes. Another method

is based on the solution of Equation 8 and actual temperature measurements

in the field. This method's accuracy is limited by the accuracy of our

solution in terms of how well our assumptions fit the measurement site.

More precise methods involving the direct measurement of G are discussed

in Taylor and Ashcroft (1972). Dependence of K on soil water content is

discussed in Rose (1966) and Sellers (1965).
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Fig. 8. Imaginary temperature gradient in soil (left-hand
curve), and the corresponding first and second.
differentials of temperature with respect to depth;
i.e., aT/az and 82T/8z2. The second differential
is proportional to that rate of temperature change
8T /8t (from Monteith 1973).
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50 52

Fig. 9. Record of the annual temperature wave at depths
of 1 m (X) and 2.5 m (°) with fitted sine curves
(from Rose 1966).
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USE OF THE HEAT CONDUCTION EQUATION

Experience with actual temperature data indicates that with the

assumption of a constant diffusivity, Equation 8 describes in a general

way the phenomenon of soil heat flow and resultant temperature distribu-

tion. It is the goal of this section to investigate in more detail the

Utility of this formalized approach through an analytical solution of

Equation 8.

Boundary Conditions

Hatheway (1977b) discusses in general the need for well-posed

boundary conditions in order to derive a unique solution for a diffusion

type equation (such as our Equation 8). It turns out that it is necessary

to specify T(z,t) or .5-
3T
i-at the soil surface (z=0), and at some depth in

the soil, which we take as z=oo. This latter choice is based on the

observation that the soil temperature at substantial depths, say greater

than 10 meters, is practically constant. Hence, our lower boundary

condition is simply

T(co,t) = t, (9)

where the overban signifies the average temperature, which we will

assume constant with depth. For the upper boundary condition, we will

make the assumption that the diurnal (Fig. 2) or annual (Fig. 9) varia-

tion of surface temperature can be approximated by a sine wave. This is

a somewhat better approximation for annual than diurnal variations. We

choose the time scale such that when t=0 the surface temperature is T.

The upper boundary condition then becomes

26
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T(0,t) = T + A(0) sin wt (10)

For the diurnal case, the period of oscillation is 24 hours, or 86,400

seconds. Of course, the w is angular frequency and can be written

w = 27/86,400 = 7.27(10)5 second 1.

The argument of the sine function (wt) is then expressed in radians if t

is in seconds. A(0) is the amplitude of the temperature wave at the

surface, so that T(0,t) over the course of a day varies between T-A(0)

and T+A(0).

Problem Solution

The solution of Equation 8 which satisfies boundary conditions 9

and 10 is

T(z,t) = T + A(z) sin[wt+B(z)] (11)

The reader is referred to Carslaw and Jaeger (1959) for the mathematical

details. Now A(z) and B(z) represent the amplitude and phase lag of the

temperature wave, respectively. From our earlier discussion of Fig. 2,

we expect A(z) and B(z) to be decreasing and increasing functions of

depth, respectively. By substituting our solution 11 into the differential

Equation 8, we find that

and

A(z) = A(0) exp (-z/D) (12)

B(z) = -z/D (13)

2'7
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where D is termed the damping depth, and is related to the thermal

properties of the soil and the frequency of the temperature wave by the

expression

D = (2K/w)4. (14)

Several aspects of this solution (Equations 11 through 14) will now be

discussed in detail.

Properties of the Harmonic Solution

Since the temperature is a function of both z and t, it is useful

in looking at graphical representations to present two sets of curves.

As is immediately apparent from Equation 11, a plot of T versus t for

various depths produces a family of sinusoids (Fig. 10). Notice the

similarities between this and some actual measurements (Figs. 2 and 9).

In general, these figures exhibit similar amplitude reductions and phase

lags with depth (see section 2) whose characteristics are attributable

to the functions A(z) and B(z) in our solution. The amplitude exhibits

exponential decay (Equation 12), a phenomenon common to many situations

in chemistry, biology and economics, to name just a few. Notice that

A(D) = e1 A(0) = .37 A(0), so that the amplitude of the temperature

wave at z = D is 37 percent of its surface value. Similarly, at z =

4.1L6 D, we find a 99 percent amplitude reduction. The phase lag is

embodied in the function B(z), which is a simple linear function of z.

For example, when z = TTD, B(z) = -it, so the maximum (or minimum) at

depth z = 7rD is exactly out of phase with the corresponding extreme of

the temperature wave at the surface. For example, in the case of Fig. 10,
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TrD = n15.2 = 47.8 cm, and we find the 40 cm wave to be almost out of

phase with the surface wave, as expected.

A plot of T versus z for various times of day using the same values

of T, A(0), and D as for Fig. 10 produces the family of curves in Fig. 11.

As was mentioned in section 3 while discussing Fig. 8, we can deduce the

direction of heat flow for this type of plot by the curvature of the

temperature profile. Here again the damping of the temperature wave

with depth is apparent.

Comparison of Theory with Experiment

In the process of formulating a closed form solution for soil heat

flow which described at least the general state of affairs in the soil

profile, we made several assumptions. The acid test, of course, of the

quality of these assumptions is how well our simplified solution (i.e.,

Equations 11-14) reflects reality. Comparison of Figs. 2 or 9 with 10

and Fig. 11 with 12 indicate that general agreement is found. Minor

discrepancies do occur, and it is instructive to examine these in light

of our prior assumptions (section 3).

First of all, however, an examination of our upper boundary condition

reveals an obvious difficulty in that it applies well only under clear

sky conditions. Variable weather conditions as well as vegetation cover

can lead to substantial deviations from a sinusoidal surface temperature

variation (Fig. 13). The more general case of a periodic surface tempera-

ture variation that is not a simple time function can be handled by a

technique called Fourier analysis. In addition, it is possible to deal
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Fig. 12. Diurnal change of soil temperature measured below
a bare soil surface and below potatoes (from
Monteith 1973).
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Fig. 13. Soil temperature variations at 10 cm depth in a clay soil
under a short grass cover at Wageningen, the Netherlands;
The upper curve shows large deviations from a periodic
function owing to variable weather conditions, while the
lower curve corresponding to a dwquence of bright days
has a periodic character. The average daily temperatures
are indicated by the dotted lines which have been. drawn
such that they divide the surfaces bounded by the tempera-
ture curves for each day equally (from Van Wyjk 1966).
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with small systematic nonperiodic variations superimposed upon a larger

periodic variation. Treatment of these refinements is available in Van

Wijk and DeVries (1966).

Variation of thermal properties (characterized by diffusivity) with

position, temperature and time are generally secondary to the above

effects concerning the upper boundary condition. Temperature effects

are slight and usually ignored. Variation with depth can be dealt with

by use of a multilevel model (Van Wijk and Derksen 1966), while time

variation can be treated by considering diffusivity as a function of

time when solving Equation 8 (Van Wijk and DeVries 1966). Both these

latter effects are caused in most part by the changes in moisture content

of the soil, which is generally a function of both depth and time (Fig. 14).

DeVries (1975) discusses the problem of combined heat and moisture

transfer. We have discussed these effects in relation to conductivity

(Fig. 6) and diffusivity. Of course, variation of diffusivity with

depth occurs also as a result of layered soils and/or differences in

soil density (and thus volumetric heat capacity) caused by compaction or

tillage.

Application of Results

A major use of the quantitative solution discussed here, and of the

possible refinements mentioned, is to explain and illustrate how the

temperature distribution of, the soil is determined. For a bare soil

under clear skies, our solution approximates reality quite well. Variable

weather, vegetative cover, various soil inhomogeneities (including

changing moisture content) as well as moisture movement (liquid and

vapor) can further complicate attempts at solution. As indicated in the

33
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Fig. 14. Soil water profiles at various times after
water was added at the soil surface (froth
Taylor and Ashcroft 1972).
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previous paragraph, some types of inhomogeneity can be handled by

extension of the present analysis. The upper boundary condition can be

modeled using Fourier analysis. Alternatively, since the temperature of

the soil surface ultimately is a result of the partitioning of solar

energy into evaporation, heating of the air and heating of the soil, we

may first calculate G(0), and from this obtain T(0). However, this

requires modeling of the energy balance (see e.g., Hatheway 1977a,

Stevenson 1977a, b, c). In practice, it may be easier to measure soil

temperature and heat flux directly rather than deal with the further

complexities of the energy balance and surface layer of the atmosphere.

In some cases, however, conditions may be close enough to ideal so

that the simple model described here can give quite useful results. For

example, Mitchell et al. (1975) present the results of a microclimatic

model for dry desert-like areas with sparse vegetation. A finite differ-

ence scheme is used to solve the soil heat co-hduction equation. In an

attempt to simplify the model, constant diffusivity and soil water

content was assumed, and changes of state (i.e., evaporation) were

ignored. Standard Weather Bureau data input were solar radiation and

average monthly air temperature. The former parameter sets the upper

boundary condition while the_latter approximates the soil temperature at

0.6 m. (From our discussion of damping depth, it should be clear that

there is little diurnal temperature change in the soil at 0.6 m depth.)

Comparison of model prediction with actual measurements indicate that

soil temperatures determined by both methods agreed within + 2°C for

daily variations of from 15°C to 35°C. Apparently, then, even simplified

models of soil thermal behavior as discussed in this module would seem

35
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to have practical application in environmental modeling. Certainly

simple models must serve as the basis of more comprehensive schemes

leading to more complete understanding of the affected biological

processes.
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PROBLEMS

1. Verify that:

(a) Equation 11 is a solution to Equation 8.

(b) Boundary conditions 9 and 10 satisfy Equation 8.

2. Devise an expression for surface heat flux density (G(0)) from

Equation 11.

(a) What is the maximum heat flux at the surface? Hint: The

trignometric identity sin (x+y) =1; sin x cos y + cos x sin y
.'1

may be useful.

(b) When does the heat flux reach its maximum in relation to the

maximum in the diurnal temperature wave at the surface? The

annual temperature wave?

c.

(c) Show that the quality D/I can be regarded as an "effective
,

depth" for heat flow. Hint: Compare. Equation 2 with result

from part 2(a).

(d) Show that the amount of heat flowing into the soil during one-

half cycle is /2CDA(0). This is the amount of heat required

to raise a layer of soil Dbrim thick A(0)°C.

3. Refer to Figure 2.

(a) Derive an expression for the damping depth D. What is the

.value of D for ,.ne diurnal temperature wave? What is the

functional relation between the diurnal and the annual damping

depth? What is the value of the annual damping depth?

(b) Estimate A(0).

(c) Calculate diffusivity (K). Was tie soil wet or dry Me Table 1,

or Figure 15 in pr,blem 4)?

r.
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4. Based on the following figure, comment on possible explanations

for the shape of the curves. Hint: Compare Figures 6 and 7.

NE
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PROBLEM SOLUTIONS

(a) T(z,t) = T + A(z) sin [wt + B(z)]

Now T = .7+ A(0) exp (-z/D) sin [cot z/D], substituting expressions

12 and 13 into 11. Taking partial derivatives as indicated by Equation 8:

3T
= wA(0) exp (-z/D) cos [wt z/D]

at
3T A(0) A(0)

Dz D
exp (-z/D) sin [wt - z/D] -ADO) exp (-z/D) cos [wt - z/D]

2
T T A() A(0)

= 2-- exp (-z/D) sin [cot - z/D] + exp (-z/D) cos [wt - z/D]

z D D`

A(0) A(0)
+ exp (-z/D) cos [wt -.z/D] - exp (-z/D) sin [wt - z/D].

D
2

D2
a
2
T

Notice the first and fourth terms in the expression for --2- cancel.

Dz

Substituting in Equation 8:

wA(0) exp (-z/D) cos [wt z/D] + K(2A/D2) exp (-z/D) cos [wt -z/D]

2A
or wA(0) = K--

'

D

Canceling the A(0)'s, and rearranging terms, we get

D = (2K/w)
1/2

, the identity of Equation 14.

(b) The first boundary condition, T(co,t) = T (Equation 9) is a constant,

so it trivially satisfies Equation 8 (0 = 0).

The second boundary condition (Equation 10) represents a special case

of the solution (Equation 11) when z = 0. Hence part (a) of this

problem constitutes proof that the second boundary condition satisfies

this problem.

11
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2. (a) T(z,t) = T + A(0) exp (-z/O) sin [wt-z/D] [11]

We know from Equation 3 that
aT

G(z,t) = -k

G(z,t) = -k {-A(0)/D exp (-z/D) sin [wt-z/D] - a(0)/D exp (-z/D) cos [wt -z /D]}

= k A(0)/D exp (-z/D) {sin [wt-z/D] + cos [wt- z /D] }.

The surface heat flux is then

G(0,t) = k A(0)/D {sin wt + cos wt}.

Using the identity sm(x+4) = sin x cos y + cos x sin y

setting y = n/4; sin(x+n/4) = (sin x + cos x), and substituting
VI

in the expression for G(0,t), we have

G(0,t) = A(0)/D sin (wt + n/4).

The maximum value of G(0,t) occurs when sin (wt + n/4) = 1, so

G(0,t) = .
max

VT kA(0)
D

(b) Comparing our expression for G(0,t) with Equation 11 for z = 0, we find that

temperature lags the heat flux by a phase angle of n/4 or 1/8 of a cycle.

This corresponds to 3 hours and 1-1/2 months for the diurnal and annual case,

respectively.

(c) Returning to our basic definition of heat flow in Equation 2, we write

AT
G =

,
""--

Comparing our result from 2(a), we note that L corresponds to Dill

if were to consider heat conduction in a slab, thickness L, with a

temperature difference maintained between the faces of A.

(d) The amount of heat flowing (Q) per unit area of soil during 1/2 cycle

can be found by integrating G(0,t).
3n/4

Q
iA(0)k

w D
n/4

sin (wt +710)d(wt)

ifA(0)k
s(wt + n/4)

031)
n/4

A(0)k
- [ -1 -(+1)]

Dw

2,)/A(0)k

12
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Recall that D = (2K/w)
1/2

and K = k/G;

Q -
2K I/A(0)G r-

v2 DA(0)C.

3. (a) Forming a ratio using Equation 12 at two depths, we find that

D =
2n[A(z

1
)/A(z

2
)]

z2 zl

Using the 30 and 15 cm curves, we estimate amplitudes of 2 and 8°C,

respectively. So

30-15 1.
D =

.41(8/
11 cm.0

Recalling the definition of D = (2K/w)
1/2

(Equation 14), we can write

the ratio

D annual w diurnal
1/2

D diurnal w annual

D annual = (365)
1/2

D diurnal = (19.1) 11 = 210 cm.

(b) Using D from part (a), we have

A(0) = A(z) exp (+ z/D)

A(0) 31 cm using z = 15 cm, D = 11 cm, A(z) = 8°C

= 31 cm using z = 30 cm, D = 11 cm, A(z) = 2°C.

(c) Solving Equation 14 for K, we get, using the results from 3(a):

w 2 w
z2 z1 2

K =
2 D 2 [!Cn A(z)1/A(z2) ]

Or, knowing that the maximum temperature occurs when sin (wtmax-z/D) = 1;

or wt
x
-z/D = ¶/2, we can subtract such expressions for different

ma

depths to get

or D =
wit

z1
wAt

max
z2 z1

max
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2

so K D
w 2 w

(z
2
-z

1
)
2

1 {z2-z1
=

2 2
w
2
At

2 2w At
max

max

Using the first of these expressions for K, one gets 8.8 x 10
-3

cm
2

sec 1,

while the latter gives 5.9 x 10
3
cm

2
sec

-1
if At

max
is taken to be 4.5 hrs.

Some divergence of answers is expected here due to variation in the thermal

properties of the soil, which we have assumed negligible.

The soil was probably dry, since the soil in question is a sandy loam. This

is shown most clearly by the figure in problem 4, where at high moisture

contents K doesn't fall much below 10 X 10
-3

cm
2

sec-1.

4. The initial rapid increase in K is due to the rapid increase of K at lower

water contents. This is because the water displaces air in the dry soil, and

the water conductivity is approximately two orders of magnitude greater than

that for air.

At higher water contents, heat capacity keeps increasing at a constant rate

with addition of water, but the rate of increase of k is continually decreasing.

Hence a point is reached when the quotient k/G peaks and decreases with

further addition.

4
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Table A. Symbols, units, and dimensions.

Symbol Quantity Units Dimensions

T temperature degrees Celsius (°C) 0

mass kilogram (kg) M

z or L length meter (m) L

t' time second (sec) T

Q heat energy joules (J) H(or ML
2

T
-2

)

heat flux watts (w) (or J sec
-1

) H T
-1

G heat flux density W
m2

HT
-

L
-2

k thermal conductivity W m 1 oc-1 HL
-1

0
1

T
-1

c specific heat J °C
-1

kg
-1 1

H 0 M
-1

C volumetric heat capacity J oc-1 -3
H 0

-1
L
-3

P density kg m
-3

M L
-3

K thermal diffusivity m
2

sec
-1

L
2

T
-1

X
m

volume fraction - minerals dimensionless

X - water dimensionless
w
X
a

- air dimensionless

X
o

- organics dimensionless

15


